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Abstract: Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating
cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of
cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed
to increased risks of cancer and severe viral infections. However, functional alterations of human NK
cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol
consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate
sleep, moderate exercise, forest bathing, and listening to music are associated with functional
healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for
immunosurveillance of cancer and viral infections with healthy NK cells.
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1. Introduction

The average global life expectancy has increased substantially over the past few
decades [1]. The aging of the population has led to a high prevalence of chronic diseases
such as cancer [2]. People with cancer have 5.8–11.2 years shorter life expectancy than their
peers without cancer [3]. Lifestyles affect the incidence of chronic diseases including cancer
and life expectancy [4]. Lifestyle factors including cigarette smoking, alcohol consumption,
physical exercise, stress, obesity, sleep, forest bathing, and listening to music. Healthy
lifestyles are related to a long life expectancy free from major diseases such as cancer [5]
and higher resistance to viral infections. Conversely, unhealthy lifestyles contribute to
the progression of severe diseases of such as COVID-19 [6] and increased risk of cancer
progression [7]. Therefore, the promotion of a healthy lifestyle is critical to the defense
against cancer and viral infections, and in improving life expectancy free of cancer and
other associated chronic diseases [5]. In this paper, we review the immunosurveillance of
cancer and viral infections with regard to alterations of natural killer (NK) cells originating
from lifestyles and aging.

2. NK Cells

NK cells were first identified in 1975 from the observation of their natural capacity to
kill tumor cells without prior in vivo sensitization [8,9]. NK cells originate from the bone
marrow, and human NK cells comprise 5–20% of all lymphocytes and are defined pheno-
typically by their expression of CD56 and lack of CD3 expression. Two distinct populations
of human NK cells could be identified, based upon their cell-surface density of CD56. The
majority of human NK cells have low-density expression of CD56 (CD56dim) and expression
high levels of CD16, which comprise about 90% of peripheral blood NK cells, whereas 10%
of NK cells are CD56brightCD16dim or CD56brightCD16negative. The CD56dim subset is more
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naturally cytotoxic, whereas the CD56bright subset, which is localized in lymphoid tissue
has the capacity to produce abundant cytokines [10–12]. However, CD56bright NK cells can
also become cytotoxic upon appropriate activation and play roles in different disease states,
such as cancer and infections [13]. NK cell functions are tightly regulated by a balance
of activating and inhibitory germline-encoded receptors [14–16]. Healthy cells express
major histocompatibility complex class I (MHC-I) molecules, which mark these cells as
“self”. MHC-I molecules act as ligands for inhibitory receptors on NK cells and contribute
to “self-tolerance”, by preventing the-killing of these healthy cells by NK cells [15,17].
The MHC-I-specific inhibitory receptors include killer cell immunoglobulin-like receptors
(KIRs) and lectin-like CD94-NKG2A heterodimers [15,16].

3. NK Cell Immunosurveillance of Cancer and Viral Infections

Cancer cells and virus-infected cells, down regulate MHC-I expression, which impairs
the engagement with inhibitory receptors on NK cells, and lowers the inhibitory signaling
threshold [15,17–19]. In addition, cancer cells and virus- infected cells upregulate NK cell
activity ligands, which in response to NK-cell -activating receptors, such as NKG2D, CD244,
NKp30, and NKp46, induce signaling pathways that trigger NK cell responses [15,16]. The
coactivation of these receptors overcomes the NK regulatory balance to mount an effective
response against cancer cells and virus- infected cells [15]. NK cell activation can result
in direct lysis of target cells, through cytotoxic degranulation by perforin and granzyme
B [15], and the simultaneous production of inflammatory cytokines, such as interferon-γ
and tumor necrosis factor-α, which activate other immune components including adaptive
response components [17,20].

NK cells play key roles in host defense against viral infections [21,22]. In humans, NK
cells are important to the innate immune response against members of the herpesvirus,
poxvirus, and papillomavirus families [23,24]. Patients with identified NK cell deficiencies
are predisposed to particularly severe, recurrent viral infection [24,25]. Mouse models
provide additional evidence that NK cells critically help in the control of several viral
infections, most notably murine cytomegalovirus, poxviruses, and influenza viruses [26,27].

Since their discovery, a numerous studies have demonstrated the NK-cell-mediated
killing of many types of tumor cell line in vitro in experimental animal models [28–33].
NK cells contribute to the immunosurveillance of human cancer [34]. A prospective
cohort study of 3625 people from the general population with 11-year follow up for cancer
incidence and death indicated that people with medium or high NK cell activity had a
reduced risk of cancer, whereas those with low NK cell activity manifested an increased
cancer risk [35]. Additionally, patients with cancer, such as colorectal cancer [36], prostate
cancer [37], and breast cancer [38] had decreased NK cell activity. Patients with metastatic
cancer had furthermore decreased NK cell activity [38]. Several studies have demonstrated
that a high degree of intratumoral infiltration of NK cells is associated with a favorable
outcome [39–41]. Moreover, NK cell activity predicted the response to chemotherapy and
immunotherapy for patients with cancer [42–44]. Therefore, functional healthy NK cells are
critical for anti-tumor and anti-virus immunities, whereas NK cell dysfunction increases
the vulnerability to viral infections and cancer (Figure 1).
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Figure 1. Schematic depiction of NK cell immunosurveillance of cancer and viral infections. (A): Healthy NK cells expressing
activating receptors can recognize virus- infected cells and cancer cells, and release sufficient amount of cytotoxic granules
and cytokines to kill and clear virus-infected cells and cancer cells. (B): Dysfunctional NK cells expressing an imbalance of
activating and inhibitory receptors with high expression of inhibitory receptors, malfunctions in the recognition of cancer
and virus-infected cells and the release of cytotoxic granules and cytokines to kill them, evasion of immunosurveillance of
viral infections and cancer, and the spread of viral infections and progression of cancer.

4. Lifestyles and NK Cells

Owing to the unique capacities of NK cells in host immunoprotection, especially
anti-tumor and anti-viral immunities, research data on NK cells in relation to lifestyles
have accumulated over the past decades since the 1980s (Table 1). In this paper we provide
an updated overview of the association of human NK cells with personal lifestyles, such as
cigarette smoking, alcohol consumption, stress, obesity, sleep, exercise, forest bathing and
listening to music. In particular, we examine findings of human studies on the alterations of
NK cell count, percentage, subsets, phenotype, activity, cytokine secretion, and functional
granule components in association with lifestyles.
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Table 1. Overview of Lifestyles Associated Alterations of Human NK Cells.

Study NK Cells Count NK Cell (%) NK Cell
Subsets

Receptors
Expression on

NK Cell
NK Activity

Chemokine and
Cytokine

Production

Functional
Granule

Components

Cigarette Smoke

Takeuchi M et al. [45] N/A N/A N/A N/A ↓ N/A N/A

Kusaka Y et al. [46] N/A N/A N/A N/A ↓ N/A N/A

Morimoto K et al. [47] N/A N/A N/A N/A ↓ N/A N/A

Jung YS et al. [48] N/A N/A N/A N/A ↓ N/A N/A

Li Q et al. [49] ↓ N/A N/A N/A N/A N/A Perforin↓, GRN↓,
GrA↓

Alcohol
Consumption

Kusaka Y et al. [46] N/A N/A N/A N/A ↔ N/A N/A

Morimoto K et al. [47] N/A N/A N/A N/A ↔ N/A N/A

Li Q et al. [49] ↔ N/A N/A N/A N/A N/A GrA↓
Ochshorn-Adelson

M et al. [50] N/A N/A N/A N/A ↓ N/A N/A

Laso FJ et al. [51] ↑ N/A N/A N/A AWLD↑, ALC↓ N/A N/A

Perney P et al. [52] ↓ N/A N/A N/A N/A N/A Perforin↓
Redwine L, et al. [53] N/A N/A N/A N/A ↓ N/A N/A

Irwin M et al. [54] N/A N/A N/A N/A ↓ N/A N/A

Stress

Morimoto K et al. [47] N/A N/A N/A N/A ↓ N/A N/A

Koga C et al. [55] N/A N/A N/A N/A ↓ N/A N/A

Andersen BL et al. [56] N/A N/A N/A N/A ↓ N/A N/A

Morikawa Y et al. [57] ↓ ↓ N/A N/A ↓ N/A N/A

Bosclo P et al. [58] N/A N/A N/A N/A ↓ N/A N/A

Glaser R et al. [59] N/A ↓ N/A N/A ↓ N/A N/A
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Table 1. Cont.

Study NK Cells Count NK Cell (%) NK Cell
Subsets

Receptors
Expression on

NK Cell
NK Activity

Chemokine and
Cytokine

Production

Functional
Granule

Components

Obesity

Lynch LA et al. [60] N/A ↓ N/A NKB1↑, CD158b↑,
CD69↑ N/A N/A N/A

Tobin LM et al. [61] ↓ ↓ N/A CD69↑, PD-1↑,
Glut-1↔ ↓ IFN-γ↔ GrB↓, Perforin↓

Bahr I et al. [62] N/A ↔ CD56bright↑,
CD56dim↓

CD56bright:
NKG2D↑,
CD56dim:

NKG2D↓, CD69↓

N/A
CD56bright:

IFN-γ↑,
CD56dim: IFN-γ↓

N/A

Naujoks W et al. [63] N/A ↔ ↔

NKp46↓, CD158i↓,
NKG2A↑,

Siglec-7↑, CD62L↓,
CD27↓

↓ N/A TRAIL↓

Laue T et al. [64] N/A ↔ ↔ TRAIL↓, CD107a↓ N/A N/A N/A

Viel S et al. [65] ↔ ↔ N/A
NKp46↓, CD94↓,

CD69↑,
CD16↓, CD107a↓

N/A IFN-γ↔, MIP1-β↓ GrB↑

Sleep deprivation

Irwin M et al. [66] N/A N/A N/A N/A ↓ N/A N/A

Irwin M et al. [67] ↓ ↓ N/A N/A ↓ N/A N/A

Moldofsky H et al. [68] N/A N/A N/A N/A ↓ N/A N/A

Dinges DF et al. [69] ↑ N/A N/A N/A ↑ N/A N/A
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Table 1. Cont.

Study NK Cells Count NK Cell (%) NK Cell
Subsets

Receptors
Expression on

NK Cell
NK Activity

Chemokine and
Cytokine

Production

Functional
Granule

Components

Exercise

Li Q et al. [49] ↑ N/A N/A N/A N/A N/A Perforin↑, GRN↑,
GrA↑, GrB↑

Nieman DC et al. [70] ↔ ↑ N/A N/A ↑ N/A N/A

Pedersen BK et al. [71] N/A ↑ N/A N/A ↑ N/A N/A

Moro-Garcia
MA et al. [72] N/A ↑ N/A N/A ↑ N/A N/A

Jung YS et al. [73] N/A N/A N/A N/A ↑ N/A N/A

Nieman DC et al. [74] ↔ N/A N/A N/A ↑ N/A N/A

Forest bathing

Li Q et al. [75] N/A ↑ N/A N/A ↑ N/A Perforin↑, GRN↑,
GrA↑,GrB↑

Li Q et al. [76] ↑ ↑ N/A N/A ↑ N/A Perforin↑, GRN↑,
GrA↑, GrB↑

Li Q et al. [77] ↑ ↑ N/A N/A ↑ N/A Perforin↑, GRN↑,
GrA↑, GrB↑

Li Q et al. [78] ↑ ↑ N/A N/A ↑ N/A Perforin↑, GRN↑,
GrA↑,GrB↑

Li Q [79] ↑ N/A N/A N/A ↑ N/A Perforin↑, GrA↑,
GrB↑

Music

Wachi M et al. [80] N/A ↑ N/A N/A ↑ IFN-γ↑, IL-10↓ N/A

Koyama M et al. [81] ↔ N/A N/A N/A ↔ N/A N/A

Hasegawa Y et al. [82] N/A ↑ N/A N/A ↑ N/A N/A

N/A: Not Available; ↔: No change; AWLD: Chronic Alcolism Without Liver Disease; ACL: Alcohol-Induced Cirrhosis. The up arrows “↑”, increase; down arrows “↓”, decrease.
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4.1. Cigarette Smoking

Cigarette smoke is a major health risk factor that increases the risk of developing
many types of cancer [83]. In a murine lung metastasis model, cigarette smoking impaired
NK-cell-dependent tumor immunosurveillance, and the resulting altered immunity was
associated with an increased tumor burden [84]. Studies in humans have shown that
NK cell activity is reduced in smokers [45–48]. Recently, a large cross-sectional study has
shown an inverse correlation between NK cell activity and the number cigarettes smoked
daily, and the total number of cigarettes smoked [48]. Cigarette smoke reduces the cytolytic
granules of perforin, granzymes, and granulysin on NK cells [49].

These finding suggest that cigarette smoking compromises NK cell function, enabling
cancer cells to evade immunosurveillance.

4.2. Alcohol Consumption

Chronic heavy consumption of alcohol by humans has been implicated as an etiologi-
cal factor or cofactor in various types of cancer [85]. Alcohol is known to have a generally
suppressive effect on the immune system in humans [86,87]. However, research data about
the effects of alcohol on NK cell activity are conflicting [50]. There are results indicating
the NK cell count in the peripheral blood is increased [51] or decreased [52] by alcohol.
Some results have shown an alcohol-related decrease in NK cell activity [53,54], while
other studies did not find any significant effect of alcohol on NK cell activity [46–48]. A
study of nonalcoholic male volunteers administered alcohol either intravenously or orally
to has showed that a single dose did not alter NK cell activity even when the blood alcohol
concentrations reached 89 mg/dl. However, when NK cells are exposed to alcohol in vitro
for 4h at concentrations of 80 mg/dl and above, a significant concentration-dependent
decrease in NK cell activity was observed [50]. Another study comparing the effects of
alcohol on NK cells between patients with chronic alcoholism without liver disease (AWLD)
and those with alcohol-induced cirrhosis (ALC) has shown that alcohol by itself induces an
increase in the number and activity of NK cells in peripheral blood. In contrast, the NK
cell activity is constantly depressed in the stage of alcoholic cirrhosis, suggesting that the
behavior of NK cells in peripheral blood in chronic alcoholism differs depending on the
presence or absence of ALC [51]. In addition, the level of perforin expression by NK cells
is decreased in patients with chronic alcoholism [52]. The alterations of NK cells induced
by chronic alcohol consumption, particularly in the stage of alcoholic cirrhosis, causes
decreased immunosurveillance, which may contribute to the higher incidence of cancer.

4.3. Stress

Psychological stress affects various immune functions [88]. The hypothalamic-pituitary-
adrenal (HPA) axis has been considered as a pathway along which psychological stress- is
transposed into an impaired immune function [89]. NK cells express adrenergic receptors,
which respond to catecholamines triggered by a stress response [90]. Subjects who com-
plained of an unstable mental state have lower NK cell activity than those who reported a
stable mental state [47]. Anxiety about cancer suppresses NK cell activity [55]. Stress levels
in patients with breast cancer negatively correlated with NK cell activity [56]. Chronic job
stress is associated with decreased NK cell count, proportion, and activity in peripheral
blood [57]. People with job insecurity have decreased NK cell activity [58]. Stress depresses
interferon (IFN) production by leukocytes concomitant with decreased NK cell activity [59].
Therefore, stress increases vulnerability to cancer and viral infections.

4.4. Obesity

Obesity increases the risk of many cancers and severe COVID-19 infection [91,92], and
is responsible for up to 40% of cases of cancer [93]. Obesity drives chronic inflammation,
which precedes the development of comorbid diseases including cancer [94]. NK cell
anti-tumor responses are negatively regulated in obesity [95]. The number of NK cells is
decreased in obese people [60,61], and is further decreased in obese people with unhealthy
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metabolic profiles [60]. There are increased CD56bright NK subset and decreased CD56dim

subset in obese people, and correlates with body mass index (BMI) [62]. Obesity is asso-
ciated with various alterations of the NK cell phenotype. Studies demonstrated that the
expression level of the functional marker TRAIL and the activating NK receptor NKp46 are
reduced in obese people [63–65]. In contrast, studies showed a highly activated NK cells in
obese people with increased expression levels of CD69, and programmed cell death pro-
tein (PD)-1, as well as the inhibitory receptors of NKB1, CD158b, CD158i, NKG2A/CD94
complex, and Siglec-7 [60,61,63,65]. In addition, the expressions of CD16, and the adhesion
molecule CD62L, and the maturation and differentiation marker CD27 on NK cells are
downregulated in obese people [63]. Despite the enhanced activation, NK cells showed
a decreased expression level of degranulating marker CD107a and decreased secretion
of granzym B and perforin as well as the macrophage inflammatory protein (MIP)-1β in
response to cancer cell lines in obese people [61,64,65]. Furthermore, the cytotoxicity of
NK cells against cancer cells is significantly impaired in obese humans [61,63]. Aside from
the characterization of total NK cells, the impact of obesity on the CD56dim and CD56bright

subset-specific NK cell phenotype has recently been investigated, which demonstrated
decreases in NKG2D-positive and CD69-positive CD56dim NK cells, while there was an
increase in NKG2D-positive CD56bright NK cells in obese people. In addition, a study of
cytokine production demonstrated a decreased expression level of IFN-γ positive CD56dim

NK cells, while there was an increased expression of IFN-γ positive CD56bright NK cells
in obese people. These alterations are correlated with BMI [62]. Therefore, obesity is
associated with alterations of NK cell frequency and phenotypes and an impaired capacity
to defend against cancer cells and virus-infected cells [61,63], which contribute to a higher
cancer risk and susceptibility to viral infections in obese people. However, weight loss was
found to reverse the obesity-induced defects in NK cells [62,96,97].

4.5. Sleep Deprivation

Sleep has a critical role in promoting health [98]. Sleep affects two primary effector
systems, the HPA axis and the sympathetic nervous system (SNS), which in turn regulate
immune responses [98,99]. NK cell activity is dependent in part on sleep. NK cell count
and activity are minimum during the early part of the night and reach the maximum
in the late morning hours [100]. There is a positive association between sleep time and
efficiency with NK cell activity [101]. Loss of sleep at night resulted in decreases in both the
number of NK cells and NK cell activity. After a night of recovery sleep, NK cell activity
returned to baseline levels [66,67]. In addition, one night of sleep deprivation decreased
NK activity [68]. In contrast, two nights of sleep deprivation increased NK activity [69].
The alterations of NK cell triggered by sleep loss were found to be mediated through
augmented levels of glucocorticoids and catecholamine [99]. The resulting reduction in
NK cell activity increased the vulnerability to cancer and viral infections.

4.6. Exercise

People who exercise almost daily have a reduced number of days of sickness [70,102].
Research has shown that positive immunological changes occur during moderate ex-
ercise [103]. NK cells have attracted the attention of exercise scientists for more than
30 years [104]. It has been reported that acute physical exercise strongly affects the NK cell
count in peripheral blood [105]. The NK cell number increases immediately after cessation
of exercise, followed by transient decreases in NK cell count and activity. Depending on
the exercise regime (type, duration, and intensity), the decreases have been observed after
15–30 min and can persist for more than 24 h [105,106]. NK cells are rapidly mobilized
into the circulation in response to acute exercise, most likely by epinephrine-dependent
β–adrenergic signaling [107,108]. This mobilization primarily affects CD56dim NK cells
and is driven by the expression of adhesion molecules of CD11a and CX3CR1 [107,109].
In view of the physical fitness level, studies unanimously revealed an increased NK cell
activity in subjects with good physical constitution [70–74]. NK cell count and activity
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are increased in racing cyclists compared with nonathletes [71]. Consistent with these
findings, athletes were found to have higher NK cell count and activity [72,74]. People
with exercise habits have higher counts of NK cells and perforin-, granulysin-, granzyme
A/B- expressing NK cells [49]. Therefore, exercise habits strengthen the NK cell function to
defend against cancer and viral infections.

4.7. Forest Bathing

A forest bathing trip is a short, leisurely visit to a forest and is regarded as being
similar to natural aromatherapy. Incorporating forest bathing trips into a good lifestyle was
first proposed in 1982 by the Forest Agency of Japan. The results of studies using the Profile
of Mood States test demonstrated that a forest bathing trip significantly increased the
score for vigor and decreased the scores for anxiety, depression, and anger [75,76]. Forest
bathing stabilizes autonomic nervous activity and significantly decreases the concentrations
of stress hormones such as adrenaline and noradrenaline [75,77,78]. The frequency and
count of NK cells, and the expression levels of granulysin, perforin, and granzymes A/B
on NK cells increased on the forest bathing days, resulting in an increase in NK cell
activity [75–79,110]. The increased NK cell activity lasted for more than 30 days after the
trip [75,77,79]. The mechanisms underlying the increased NK cell activity during forest
bathing may be partially related to an attenuated stress hormone response and also to
breathing in of volatile organic compounds, called phytoncides produced by trees, such
as α–pinene and limonene [75–77,110]. In vitro research data indicate that phytoncides
increase NK cell activity in a dose-dependent manner and prevent dichlovos-induced
inhibition of NK cell activity [79]. Therefore, forest bathing trips have a positive effect on
immunosurveillance against cancer and viral infections.

4.8. Music

Music therapy has attracted the attention of various fields such as psychiatry and
geriatrics. Music therapy improves mood states by decreasing tension/anxiety, depres-
sion/dejection, anger/hostility, fatigue/inertia, and confusion/bewilderment and increases
vigor/activity [80,81,111,112]. Music reduces the levels of stress hormones [113] and pro-
vides relief from stress [114,115]. The frequency of NK cells and NK cell activity are
increased after music therapy [80,82]. Therefore, music provides a “wellness environment”,
which improves defense against cancer and viral infections.

5. Aging with NK Cells

Aging is accompanied by dysregulated immune function that contributes to an in-
creased susceptibility to diseases, such as cancer and infections [116]. Physiological aging
is associated with changes in the composition, phenotype, and function of circulating NK
cells [117]. Studies to date have shown the effects of aging on human NK cells (Table 2).
Significant increases in the percentage and absolute number of NK cells are the general
observations reported [118–120]. Regarding to NK cell subsets, studies have shown that the
proportions and number of CD56dim NK cells increases with age [118,120,121], and older
adults possess significantly fewer CD56bright NK cells [118–121], resulting in a marked
age-related increase in the CD56dim:CD56bright ratio [118,120,121]. Regarding the effects
of aging on the NK cell phenotype, there is an age-related decrease in the expression
level of activating receptors, such as NKp30 and/or NKp46 [118,120], and the expression
levels of inhibitory receptors such as CD94 and/or NKG2A also show age-associated
reductions [118,120,121]. Additionally, the proportion of CD57, a marker of NK maturity, is
higher in older adults [120], whereas the expression level of CD69, an activation marker, in-
creases with aging [119]. However, the increased expression level of CD57 on NK cells has
been shown to be affected by infection by viruses, such as human cytomegalovirus [122].
CD57 is not necessarily a marker of aging/immunosenescence [123]. Importantly, aging
is accompanied by decreased NK cell activity, which may be due to an age-associated
impairment in perforin secretion [120]. Prospective studies have demonstrated that low
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NK cell activity is associated with an increased susceptibility to viral infections [124] and
cancer [35].

Table 2. Overview of Aging Associated Alterations of Human NK Cells.

Study NK Cells
Count NK Cell (%) NK Cell

Subsets

Receptors
Expression on

NK Cell
NK Activity

Chemokine
and Cytokine

Production

Functional
Granule

Components

Almeida-Oliveira
A et al. [118] ↑ ↑ CD56bright↓,

CD56dim↑
NKp46↓,

NKp30↓, CD94↓ N/A N/A N/A

Le Garff-Tavernier
M, et al. [119] ↑ ↔ CD56bright↓ CD69↑ ↔ IFN-γ↔ N/A

Hazeldine
J et al. [120] N/A ↑ CD56bright↓,

CD56dim↑
NKp46↓, CD94↓,

CD57↑ ↓ N/A Perforin↓

Lutz CT et al. [121] N/A N/A CD56bright↓,
CD56dim↑ NKG2A↓ N/A N/A N/A

N/A: Not Available; ↔: No change. The up arrows “↑”, increase; down arrows “↓”, decrease.

6. Immunosurveillance of Cancer and Viral Infections by Healthy NK Cells

NK cells are lymphocytes of the innate immune system, which can deal promptly
with stressed cells, such as cancer cells and virus-infected cells, while also regulating the
body’s adaptive immunoresponses [125]. However, alterations in NK cells are associated
with certain lifestyles [47,49,124,126] and aging [117]. Personal lifestyles, such as cigarette
smoking, alcohol consumption, stress, obesity, and aging are associated with NK cell
dysfunction, whereas adequate sleep, exercise, forest bathing, and listening to enjoyable
music are associated with a healthy NK cell function (Figure 2). Therefore, adherence to a
healthy lifestyle is essential and will be favorable to the immunosurveillance of cancer and
viral infections with functional healthy NK cells.
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Figure 2. Schematic short list of the impacts of lifestyles and aging on NK cells. Cigarette smoking,
alcohol consumption, stress, obesity, and aging suppress NK cell function, leading to a dysfunctional
NK cells, whereas sleep, exercise, forest bathing, and listening to music enhance NK cell function
with maintained functional healthy NK cells.

7. Future Directions

Although there are many confounding factors for the associations among lifestyle,
NK cells, and cancer or viral infections, future research is needed to provide scientific
evidence of immunosurveillance of cancer and viral infections in relation to the alterations
of NK cells caused by lifestyles and aging. Clinical studies are also necessary to clarify the
importance of improving lifestyles in disease prevention.

For disease treatment using NK cells, NK-cell-based adoptive immunotherapy has been
introduced for cancer treatment and has been considered for viral infections [19,127,128].
To obtain convincing evidence of the importance of NK cells for disease treatment, it is
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necessary to treat cancer or viral infections using the combination of NK cell therapy and
lifestyle improvement. To this end, further studies are necessary.

8. Conclusions

NK cells play key roles in the innate elimination of cancer cells and virus-infected cells.
Alterations of NK cells are associated with lifestyles and aging. Adherence to a healthy
lifestyle is essential and will be favorable to the immunosurveillance of cancer and viral
infections with healthy NK cells.
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